The generator matrix

 1  0  0  1  1  1  1  1  1  6  1  1 X+6  1 2X+3  1 2X  1  1  X  1  3  1  1  1 2X  1  1  1 2X  1  1  3  1  1  6  1 2X+3  1  1  1  X  0  1  1  X  1  1  1  1  1  1  1  1  1 2X+6  1  1  1  1  1 2X+3  1  X
 0  1  0  6  1  7  5  X  8  1 2X+7 2X+5  1 X+3  1 2X X+6 2X+3 2X+1  1 X+2  1  7  8 X+8  1 X+7  3 X+1  1 2X+2 X+6  1  5 2X+5  X X+4  1 X+8 2X+4 2X+1  1 2X+3  6 X+5  6 2X+6 X+4 X+6 2X+4 X+3 X+7  0 X+5 2X+6  0 X+2 X+1  6 2X+2 2X+5 X+6 X+3  1
 0  0  1 2X+7 2X+1  6 X+2 X+8 2X  1 2X+5  7  5 2X+3 X+6  4  1 2X+2 2X+4 X+1  8 2X  2 X+3  1 2X+2  X X+7  4  5 2X+6 X+3 X+7  8 X+2  1  5  3 2X+4  6  2 X+8  1 2X+3 X+8  1 2X+1 2X+6  0  1  7 2X+2  X X+3 X+7  1 2X+7 2X+1  4 2X+4  X  1  1 2X+1

generates a code of length 64 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 122.

Homogenous weight enumerator: w(x)=1x^0+876x^122+1250x^123+1434x^124+2130x^125+2166x^126+1368x^127+2196x^128+1996x^129+1206x^130+1446x^131+994x^132+720x^133+948x^134+598x^135+126x^136+180x^137+18x^138+6x^141+6x^142+16x^144+2x^147

The gray image is a code over GF(3) with n=576, k=9 and d=366.
This code was found by Heurico 1.16 in 0.872 seconds.